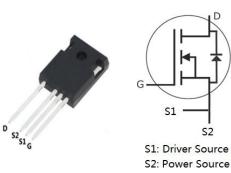


N-Channel SiC Power MOSFET

Features

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitance
- Easy to connect in parallel and to Drive

Benefits


- Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency

Applications

- High Voltage DC/DC Converters
- Motor Drives
- Switch Mode Power Supplies
- Pulsed Power applications

VDS	1200 V
RDS(on)	$40 \text{ m}\Omega$
ID@25°C	60 A

Package

Part Number	Package	Marking
RSM60N120T7L	TO-247-4	60N120

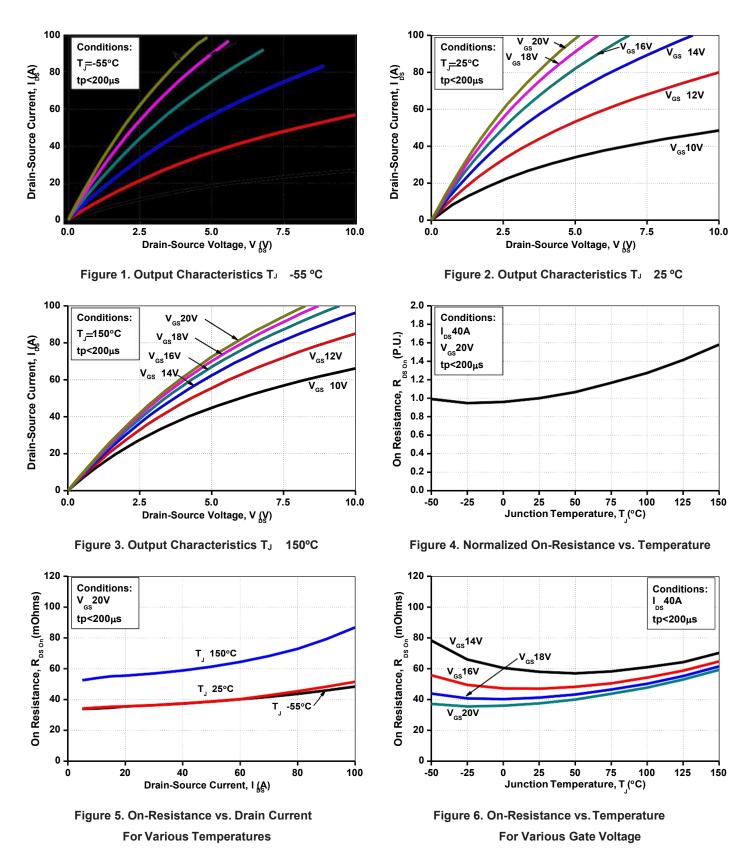
Maximum Ratings (Tc=25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{DSmax}	Drain-Source Voltage	1200	v	V _{GS} =0V, I _D =100μA	
V _{GSmax}	Gate-Source Voltage	-10/+25	v	Absolute maximum values	
V _{GSop}	Gate-Source Voltage	-5/+20	v	Recommended operational values	
I _D Continuous Drain Current	Continuous Ducin Countrat	60		V _{GS} =20V, T _c =25°C	
	40	A	V _{GS} =20V, T _c =100°C		
I _{D(pulse)}	Pulsed Drain Current	160	A	Pulse width t _p limited by T _{Jmax}	
PD	Power Dissipation	330	w	Tc=25°C, TJ=150°C	
T」, T _{STG}	Operating Junction and Storage Temperature	-55 to +175	°C		

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
V(BR)DSS	Drain-Source Breakdown Voltage	1200			v	V _{GS} =0V, Ι _D =100μΑ	
Markey	Gate Threshold Voltage	1.9	2.5	4.0	v	V _{DS} =V _{GS} , I _D =10mA	
V _{GS(th)}	Gate Threshold Voltage		1.8		v	V _{DS} =V _{GS} , I _D =10mA, T _J =150 [°] C	
I _{DSS}	Zero Gate Voltage Drain Current		1	100	μA	V _{DS} =1200V, V _{GS} =0V	
I _{GSS+}	Gate-Source Leakage Current		10	250	nA	V _{DS} =0V, V _{GS} =25V	
Igss-	Gate-Source Leakage Current		10	250	nA	V _{DS} =0V, V _{GS} =-10V	
Pro()	Drain-Source On-State Resistance		40	55	mΩ	V _{GS} =20V, I _D =40A	
RDS(on)	Drain-Source On-State Resistance		80		11132	V _{GS} =20V, I _D =40A, T _J =150 [°] C	
Ciss	Input Capacitance		2946			V _{GS} =0V	
Coss	Output Capacitance		167		рF	V _{DS} =1000V	
Crss	Reverse Transfer Capacitance		6.6			f=1MHz	
Eoss	Coss Stored Energy		92		μ	V _{AC} =25mV	
ΕοΝ	Turn-On Switching Energy		1.1		mJ	V _{DS} =800V, V _{GS} =-5V/20V	
EOFF	Turn-Off Switching Energy		0.85			I_D =40A, R _{G(ext)} =2.5Ω, L=100µH	
t _{d(on)}	Turn-On Delay Time		12				
tr	Rise Time		10		V _{DS} =800V, V _{GS} =-5V/20V, I _D =40A		
t _{d(off)}	Turn-Off Delay Time		25		115	$R_{G(ext)}=2.5\Omega, R_L=20\Omega$	
t _f	Fall Time		6.2				
R _{G(int)}	Internal Gate Resistance		2.3		Ω	f=1MHz, V _{AC} =25mV	
Q _{GS}	Gate to Source Charge		37			V _{DS} =800V	
Q _{GD}	Gate to Drain Charge		18		nC	V _{GS} =-5V/20V	
\mathbf{Q}_{G}	Total Gate Charge		142			I _D =40A	

Electrical Characteristics (Tc=25°C unless otherwise specified)

Reverse Diode Characteristics


Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
N.	V Diada Serward Veltage 4.5		v	V _{GS} =-5V, I _{SD} =20A		
V _{SD}	Diode Forward Voltage	4.2		v	V _{GS} =-5V, I _{SD} =20A, T _J =150°C	
ls	Continuous Diode Forward Current		TBD	Α	Tc=25°C	
t _{rr}	Reverse Recover Time	41		ns		
Qrr	Reverse Recovery Charge	142		nC	V _R =800V, I _{SD} =40A	
Irrm	Peak Reverse Recovery Current	6		Α		

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
R _{θJC}	Thermal Resistance from Junction to Case	0.34		°C/W		
Reja	Thermal Resistance from Junction to Ambient		40	67 VV		

RATING AND CHARACTERISTICS CURVES (RSM60N120T7L)

RATING AND CHARACTERISTICS CURVES (RSM60N120T7L)

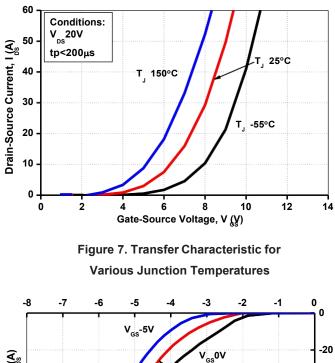


Figure 9. Body Diode Characteristic at 25 °C

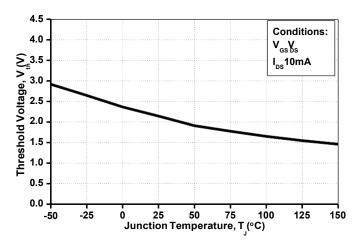


Figure 11. Threshold Voltage vs. Temperature

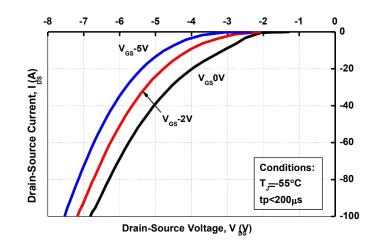


Figure 8. Body Diode Characteristic at -55 °C

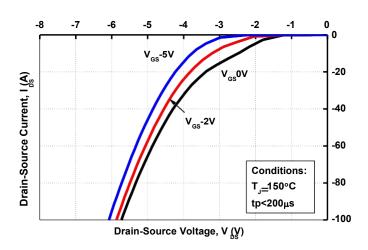


Figure 10. Body Diode Characteristic at 150 °C

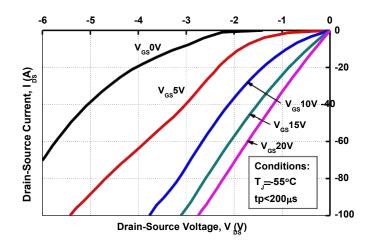


Figure 12. 3rd Quadrant Characteristic at -55 °C

ERECTRON -

RATING AND CHARACTERISTICS CURVES (RSM60N120T7L)

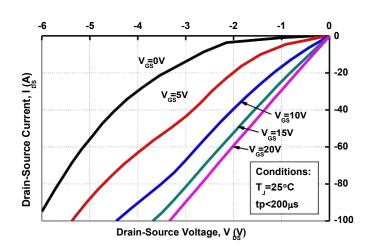


Figure 13. 3rd Quadrant Characteristic at 25 °C

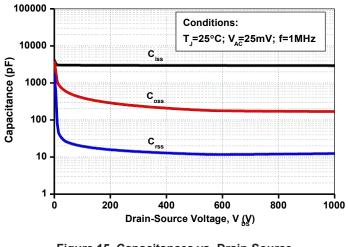
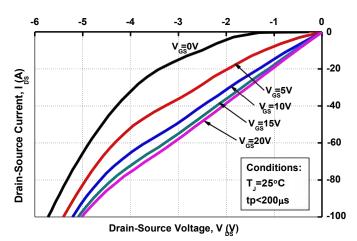



Figure 15. Capacitances vs. Drain-Source Voltage (0 - 200V)

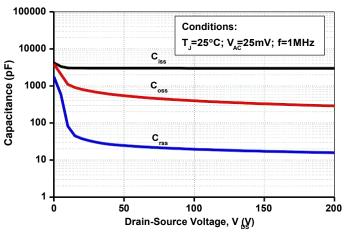
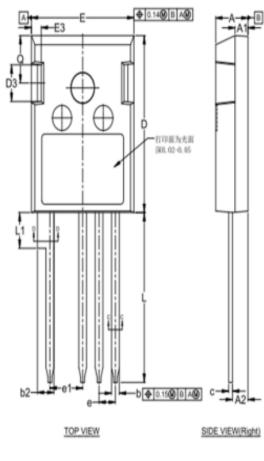
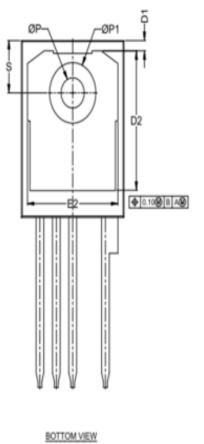
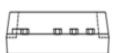




Figure 16. Capacitances vs. Drain-Source Voltage (0 - 1000V)


CRECTRON -

TO-247-4 Package

DIM	MIN.	NOM.	MAX.		
A	4.900	5.000	5.100		
A1	1.940	2.040	2.140		
A2	2.300	2.400	2.500		
b	1.140	1.240	1.330		
b1	1.100	1.200	1.300		
b2	2.490	2.590	2.690		
b3	2.450	2.550	2.650		
с	0.550	0.640	0.700		
c1	0.500	0.600	0.700		
D	20.850	20.950	21.050		
D1	1.022	1.222	1.400		
D2	16.348	16.548	16.748		
D3	4.232	4.332	4.432		
E	15.800	15.900	16.000		
E2	13.821	14.021	14.221		
E3	1.430	1.530	1.630		
e	2	2.540 BSC.			
e1	5.080 BSC.				
L	19.900	20.100	20.300		
L1	4.024	4.224	4.424		
ØP	3.500	3.600	3.700		
ØP1	7.088	7.188	7.288		
Q	5.435	5.635	5.835		
S	6.040	6.200	6.300		

SIDE VIEW(Front)

SECTION:C-C

SECTION:D-D

b3

-b2-

CRECTRON

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

