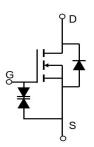
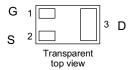


N-Channel Enhancement Mosfet


General Features

• 30V, 0.5A


 $R_{DS(ON)}$ Typ = 515m Ω @ V_{GS} = 4.5V

 $R_{DS(ON)}$ Typ = 615m Ω @ V_{GS} = 2.5V

- Advanced Trench Technology
- \bullet Excellent $R_{\text{DS}(\text{ON})}$ and Low Gate Charge
- ESD Protected: G-S > 2KV

Schematic diagram

DFN1006 (SOT883)

Application

- Load Switch
- Power Management
- Halogen-free

Package Marking And Ordering Information

Device Marking	Device	Device Package	Packaging Code	Reel Size	Quantity (PCS)	
0530	RM05N30ED1	DFN1006	-T	7inch	10000	

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	Vgs	±10	V
Drain Current-Continuous	I _D	0.5	А
Drain Current-Pulsed (Note 1)	I _{DM}	2	Α
Maximum Power Dissipation	P _D	0.35	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

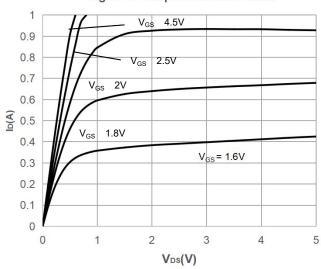
Thermal Characteristic

	T		1
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	357	°C/W

2025-01/X REV:O

Electrical Characteristics (TA=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			'			•
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30V$, $V_{GS} = 0V$	-	-	1.0	μА
Gate-Body Leakage Current	I _{GSS}	V _{DS} = 0V, V _{GS} = ±10V	-	-	±10	μА
On Characteristics (Note 3)			•		•	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.4	0.7	1.2	V
Drain-Source On-State Resistance	В	$V_{GS} = 4.5V, I_{D} = 0.2A$	-	515	650	mΩ
Dialii-Source Oil-State Resistance	R _{DS(ON)}	$V_{GS} = 2.5V, I_D = 0.15A$	-	615	800	mΩ
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}		-	27	-	pF
Output Capacitance	Coss	$V_{GS} = 0V, V_{DS} = 15V,$ f = 1MHz	-	6	-	pF
Reverse Transfer Capacitance	C _{rss}	1 – 11011 12	-	3	-	pF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	2	-	ns
Turn-on Rise Time	t _r	$V_{GS} = 10V, V_{DD} = 30V$	-	14	-	ns
Turn-Off Delay Time	$t_{d(off)}$	$I_D = 0.5A, R_{GEN} = 10\Omega$	-	6	-	ns
Turn-Off Fall Time	t _f		-	9	-	ns
Total Gate Charge	Qg	\/ 0 to 4 E\/	-	1.6	-	nC
Gate-Source Charge	Q _{gs}	$V_{GS} = 0 \text{ to } 4.5V$ $V_{DS} = 15V, I_D = 0.3A$	-	0.2	-	nC
Gate-Drain Charge	Q_{gd}	DS = 10 V, 1 _D - 0.5A	-	0.5	-	nC
Drain-Source Diode Characteristics	•	•	•			•
Diode Forward Voltage (Note 3)	V _{SD}	$V_{GS} = 0V, I_{S} = 0.5A$	-	-	1.2	V
Diode Forward Current	Is		-	-	0.5	Α
						+


Notes:

- $\textbf{1.} \ \mathsf{Repetitive} \ \mathsf{Rating:} \ \mathsf{Pulse} \ \mathsf{width} \ \mathsf{limited} \ \mathsf{by} \ \mathsf{maximum} \ \mathsf{junction} \ \mathsf{temperature}.$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

RATING AND CHARACTERISTICS CURVES (RM05N30ED1)

Figure 1: Output Characteristics

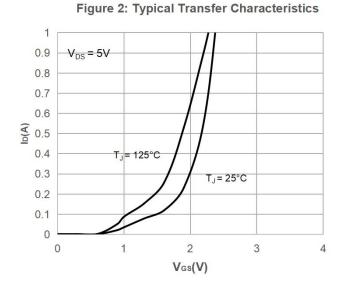


Figure 3: On-resistance vs. Drain Current

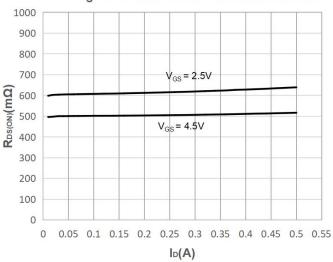


Figure 4: Body Diode Characteristics

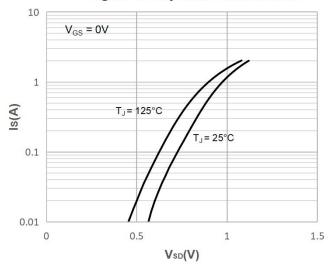


Figure 5: Gate Charge Characteristics

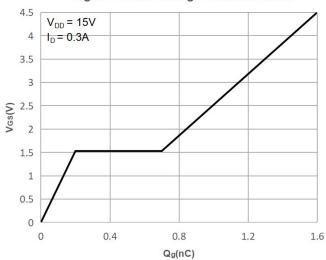
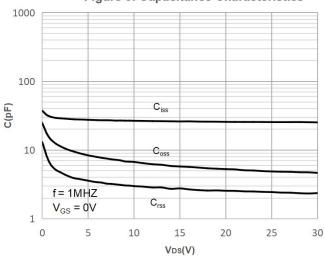



Figure 6: Capacitance Characteristics

RATING AND CHARACTERISTICS CURVES (RM05N30ED1)

Figure 7: Normalized Breakdown voltage vs.
Junction Temperature

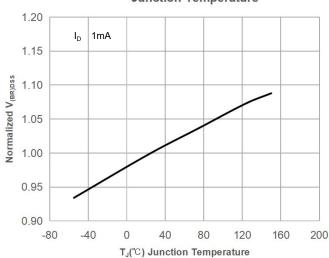


Figure 9: Maximum Safe Operating Area

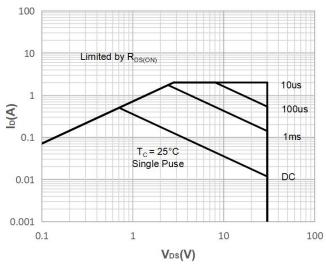


Figure 11: Normalized Maximum Transient

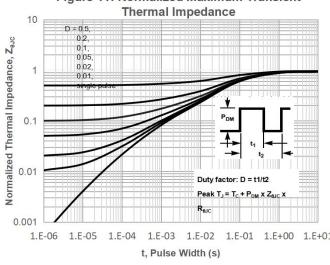


Figure 8: Normalized on Resistance vs.
Junction Temperature

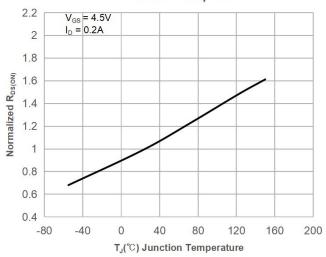


Figure 10: Maximum Continuous Drian Current vs. Case Temperature

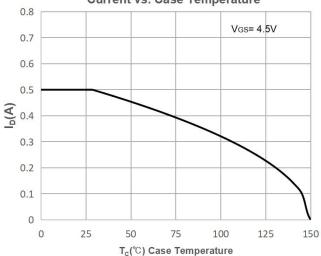
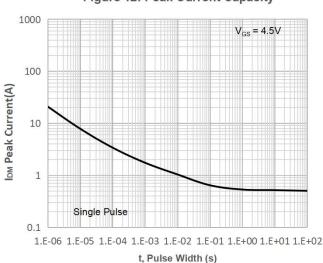



Figure 12: Peak Current Capacity

Test Circuit

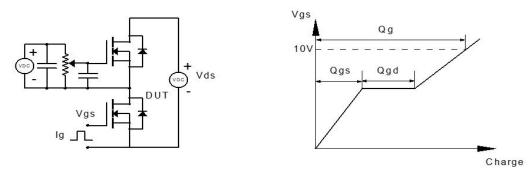


Figure 1: Gate Charge Test Circuit & Waveform

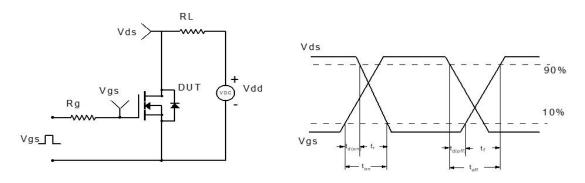


Figure 2: Resistive Switching Test Circuit & Waveform

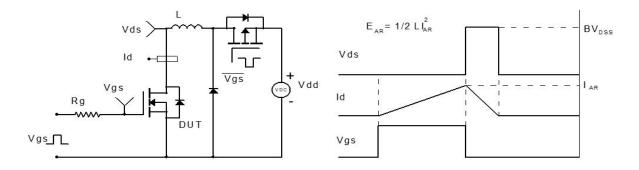
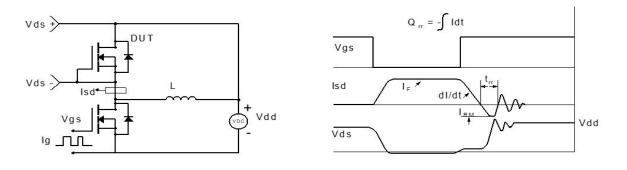
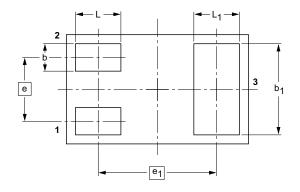
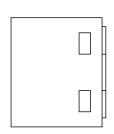
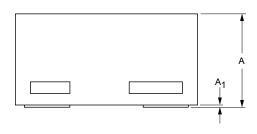
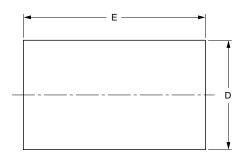
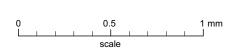


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform


Figure 4: Diode Recovery Test Circuit & Waveform




DFN1006 Package Information

DIMENSIONS (mm are the original dimensions)

UNIT	A ⁽¹⁾	A ₁ max.	b	b ₁	D	E	е	e ₁	L	L ₁
mm	0.50 0.46	0.03	0.20 0.12	0.55 0.47	0.62 0.55		0.35	0.65	0.30 0.22	0.30 0.22

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

