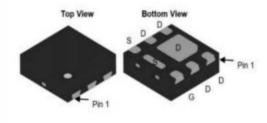

P-Channel Enhancement Mosfet

Feature

• -40V,-10A

 $R_{DS\ (ON)}\ (TYP:27m\Omega) < 34m\ \Omega\ @V_{GS}\ = -10V$ $R_{DS\ (ON)}\ (TYP:34m\Omega) < 49m\ \Omega\ @V_{GS}\ = -4.5V$


- Advanced Trench Technology
- Lead free product is acquired
- Excellent R_{DS} (ON and Low Gate Charge
- Tj max = 175°C
- P/N suffix V means AEC-Q101 qualified, e.g: RM10P40D2V

Schematic Diagram

Application

- PWM applications
- Load Switch
- Power management
- Halogen-free

DFN2X2

Package Marking and Ordering Information

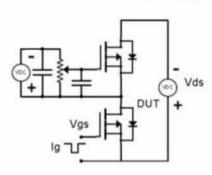
Device Marking	Device	Device Package	Packaging Code	Reel Size	Quantity (PCS)
10P40	RM10P40D2V	DFN2x2	-T	7inch	3000

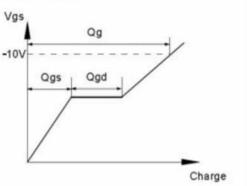
ABSOLUTE MAXIMUM RATINGS (TJ=25℃ unless otherwise noted)

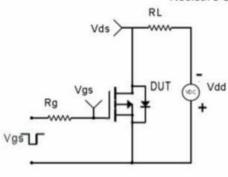
Parameter	Symbol	Value	Unit
Drain-Source Voltage	VDS	-40	V
Gate-Source Voltage	Vgs	±20	V
Continuous Drain Current (Tc =25℃)	lo	-10	Α
Continuous Drain Current (T _C =100℃)	lo	-7.1	Α
Pulsed Drain Current (1)	Ірм	-40	Α
Single Pulsed Avalanche Energy (2)	Eas	42	mJ
Power Dissipation	PD	6.5	W
Thermal Resistance from Junction to Case	Reuc	20	°C/W
Thermal Resistance from Junction to Ambient ⁽³⁾	R _{θJA}	78	°C/W
Junction Temperature	TJ	175	°C
Storage Temperature	Тѕтс	-55~ +175	$^{\circ}$ C

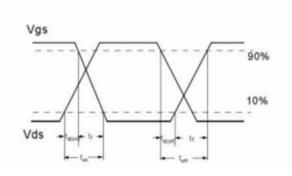
MOSFET ELECTRICAL CHARACTERISTICS(TJ=25℃ unless otherwise noted)

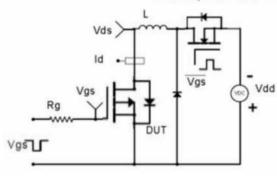
Parameter	Symbol	Test Condition	Min	Туре	Max	Unit	
Static Characteristics							
Drain-source breakdown voltage	V(BR)DSS	V _G S = 0V, I _D =-250µA	-40	-	-	V	
Zero gate voltage drain current	IDSS	V _{DS} =-40V, V _{GS} = 0V	-	-	-1	μA	
Gate-body leakage current	lgss	V _{GS} =±20V, V _{DS} = 0V	-	-	±100	nA	
Gate threshold voltage ⁽³⁾	VGS(th)	V _{DS} =V _{GS} , I _D =-250µA	-1	-1.5	-2.2	V	
(0)	Proc	Vgs =-10V, ID =-10A	-	27	34	mΩ	
Drain-source on-resistance ⁽³⁾	RDS(on)	V _G S =-4.5V, I _D =-8A	-	34	49		
Dynamic characteristics							
Input Capacitance	Ciss		-	1512	-	pF	
Output Capacitance	Coss	V _{DS} =-20V, V _{GS} =0V, f =1MHz	-	115	-		
Reverse Transfer Capacitance	Crss		-	104	-		
Switching characteristics	·						
Turn-on delay time	td(on)		-	4	-	ns	
Turn-on rise time	tr	VDD=-20V, ID=-10A,	-	27.5	-		
Turn-off delay time	td(off)	V _G s=-10V, R _G =2.5Ω	-	39.4	-		
Turn-off fall time	tf		-	10.4	-		
Total Gate Charge	Qg		-	27.6	-		
Gate-Source Charge	Qgs	VDS=-20V, ID=-8A,	-	4.4	-	nC	
Gate-Drain Charge	Qgd	VGS=-10V	-	5.4	-		
Source-Drain Diode characteristics				•			
Diode Forward voltage ⁽³⁾	Vos	V _{GS} =0V, I _S =-10A	-	-	-1.2	V	
Diode Forward current ⁽⁴⁾	ls		-	-	-10	Α	
Reverse Recovery Time	Trr	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	10.9	-	ns	
Reverse Recovery Char	Qrr	V _{GS} =0V, I _S =-10A,di/dt=100A/μS	-	2.09	-	nC	

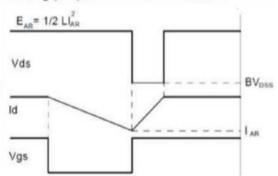

Notes:

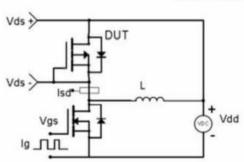

- 1. Repetitive Rating: pulse width limited by maximum junction temperature
- 2. EAS Condition: T_J =25 $^{\circ}$ C, V_{DD} =-20V, R_G =25 $^{\circ}$ C,L=0.5mH, I_{AS} =-13A
- 3. Pulse Test: pulse width≤300µs, duty cycle≤2%
- 4. Surface Mounted on FR4 Board,t≤10 sec


Test Circuit & Waveform






Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

RATING AND CHARACTERISTICS CURVES (RM10P40D2V)

Fig1. Typical Output Characteristics@Tj= 125℃

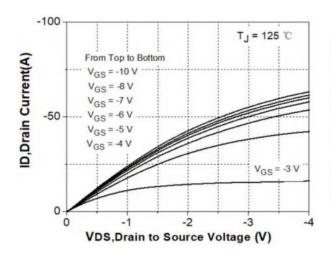


Fig2. Transconductance vs. Drain Current @Tj = -25/25/75/125°C

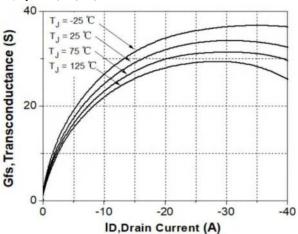


Fig3. Typical Transfer Characteristics @Tj= -25/25/75/125°C

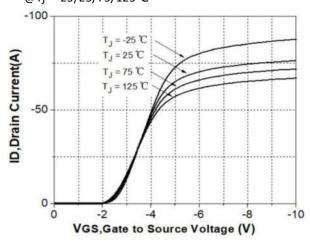


Fig4. Static Drain - Source On - State Resistance vs. Drain Current @Tj= -25 $^{\circ}$ C

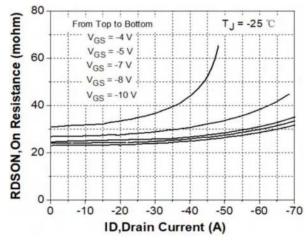


Fig5. Static Drain - Source On - State Resistance vs. Drain Current @Tj= 25° C

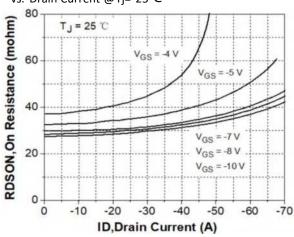
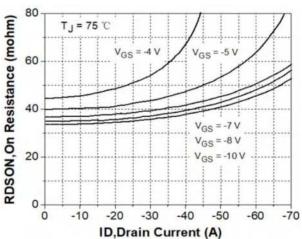



Fig6. Static Drain - Source On - State Resistance vs. Drain Current @Tj= 75° C

RATING AND CHARACTERISTICS CURVES (RM10P40D2V)

Fig7. Static Drain - Source On - State Resistance vs. Drain Current @Tj= 125° C

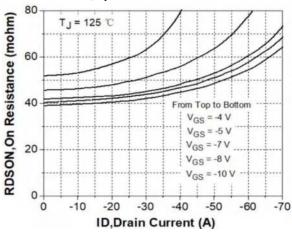


Fig8. Gate Charge Characteristics

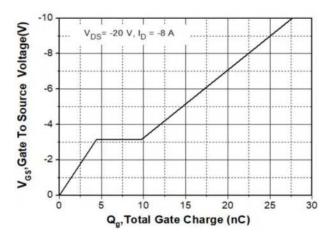


Fig9. Breakdown Voltage vs. Junction Temperature

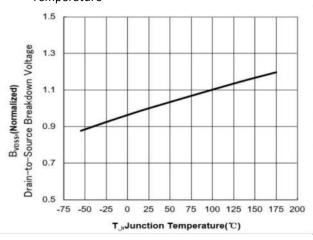


Fig10. Gate Threshold Voltage vs. Junction Temperature

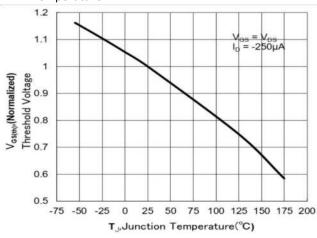


Fig11. On-Resistance Variation vs. Junction Temperature

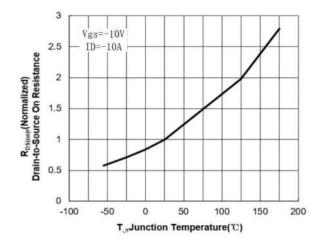
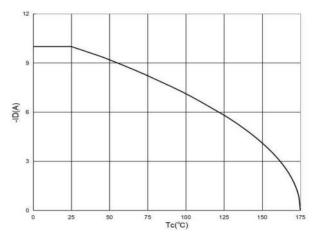



Fig12. Maximum Drain Current vs. Case Temperature

RATING AND CHARACTERISTICS CURVES (RM10P40D2V)

Fig13. Body Diode Forward Voltage vs. Reverse Drain Current

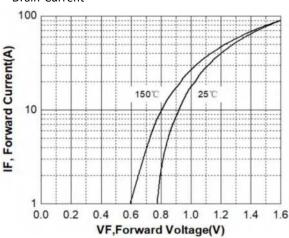


Fig14. Typical Output Characteristics@Tj= 25°C

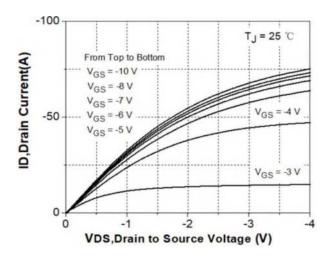
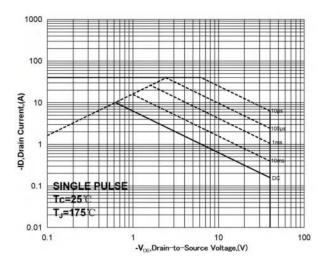
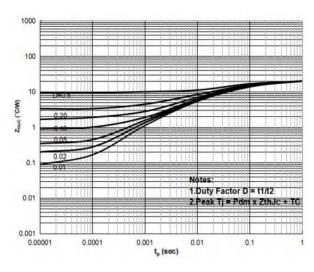
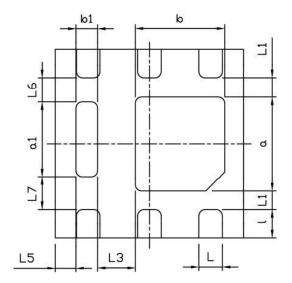
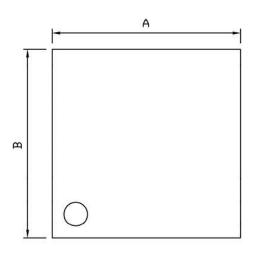
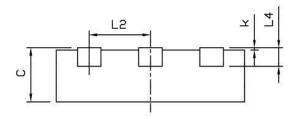




Fig15. Safe Operating AreaFig




16. Transient Thermal Response Curve



DFN2X2 Package Information

Dimensions In Millimeters				
Symbol	MIN	TYP	MAX	
Α	1.95	2.00	2.05	
В	1,95	2.00	2.05	
С	0.45	0.50	0.55	
L	0.25	0.30	0.35	
L1	0.10	0.20	0.30	
L2	1	0.65	-	
L3	0.30	0,40	0.50	
L4	1	0.152	-	
L5	0.12	0.22	0.32	
L6	0.15	0.25	0.35	
L7	0.23	0.33	0.43	
a	0.90	1.00	1.10	
۵1	0.72	0.82	0.92	
b	0.85	0.95	1.05	
b1	0.13	0.23	0.33	
ι	0.25	0.30	0.35	
k	0.00	-	0.05	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

