

RM11N650LD

N-Channel Power MOSFET

Features

- 650V, 11A, R_{DS(ON)}(Typ.) = 0.32Ω@V_{GS} = 10V
- Advanced Super Junction Technology
- Easy To Control Gate Switching
- Enhancement Mode: V_{GS(th)} = 2.8 to 4.2 V

Application

- Resonant Switching PWM
- PFC Stages, Hard Switching PWM Stages
- PC, Silver box, Adaptor, LCD & PDP TV and Lighting
- Server Power, Telecom Power and UPS Application
- Halogen-free

Package Marking And Ordering Information

Device	Device Package	Marking
RM11N650LD	TO-252	11N650

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Symbol	Parameter	Rating	Unit
V _{DS}	Drain-Source Voltage ^a	650	V
V _{GS}	Gate-Source Voltage	±30	
ID	Drain Current-Continuous, T _C =25°C	11	•
I _{DM}	Drain Current-Pulsed ^b	33	
PD	Maximum Power Dissipation @ T_J =25°C	83	W
dv/dt	Peak Diode Recovery dv/dt °	15	V/ns
Eas	Single Pulsed Avalanche Energy ^d	624	mJ
TJ, TSTG	Operating and Store Temperature Range	150,-55 to 150	°C

Thermal Characteristics

Symbol Parameter		Value	Unit
$R_{\theta}J_{C}$	Thermal Resistance, Junction to Case	1.5	°C/W
$R_{\theta}J_{A}$	Thermal Resistance, Junction to Ambient	62	°C/W

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted Off Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250 \mu A$	650	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650V, V _{GS} = 0V	-	-	1	μA
I _{GSS}	Forward Gate Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 30V$	-	-	±100	nA

On Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = 250 μ A	2.8	-	4.2	V
R _{DS(on)}	Static Drain-Source On- Resistance °	V_{GS} = 10V, I _D = 5.5A	-	0.32	0.35	Ω

Dynamic Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
R _G	Gate Resistance	f = 1.0MHz	-	11	-	Ω
Ciss	Input Capacitance	V _{DS} = 50V, V _{GS} = 0V, f = 10kHz	-	901	-	
Coss	Output Capacitance		-	59	-	pF
Crss	Reverse Transfer Capacitance		-	5.3	-	

On Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400V,$ $I_D = 4.8A,$ $V_{GS} = 13V,$ $R_G = 3.4\Omega$	-	7.2	-	
tr	Turn-On Rise Time		-	20.8	-	
t _{d(off)}	Turn-Off Delay Time		-	29.2	-	115
t _f	Turn-Off Fall Time		-	19.2	-	
Qg	Total Gate Charge	$V_{DS} = 400V,$ $I_{D} = 4.8A,$ $V_{GS} = 0 \text{ to} 10V$	-	22	-	
Q _{gs}	Gate-Source Charge		-	5.8	-	nC
Q _{gd}	Gate-Drain Charge		-	17	-	

Drain-Source Diode Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{SD}	Drain-Source Diode Forward Voltage	V_{GS} = 0V, I _F = 1A	-	0.74	-	V
Trr	Body Diode Reverse Recovery Time	I _F =4.8A,V _R = 400V dI _F /dt=100A/us	-	250	-	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =4.8A,V _R = 400V dI _F /dt=100A/us	-	2.57	-	μC
I _{rrm}	Peak reverse recovery current	I _F =4.8A,V _R = 400V dI _F /dt=100A/us	-	19.6	-	А

Notes:

a. T_J = +25 $^\circ\!\mathrm{C}$ to +150 $^\circ\!\mathrm{C}$

b. Repetitive rating; pulse width limited by maximum junction temperature.

c. Pulse width $\,\leq\,$ 300µs; duty cycle $\,\leq\,$ 2%

d. L = 49.9mH, V_{DD} = 50V, I_{AS} = 10A, R_G = 25 Ω Starting T_J = 25 $^\circ\!{\rm C}$.

RATING AND CHARACTERISTICS CURVES (RM11N650LD)

Figure 3. Typical Gate Charge

Figure 5. Drain-source Breakdown Voltage

Figure 2. Typical Transfer Characteristics

Figure 4. Typical Capacitance

Package Information

A1

Dim.	Min. Max.		
А	2.1 2.5		
A1	6.3	6.9	
В	0.96	1.42	
B1	0.74	0.86	
B2	0.74	0.94	
С	Тур	0.5	
D	5.33	5.53	
D1	3.65	4.05	
E	6.0	6.2	
E1	Тур2.29		
E2	Typ4	1.58	
0	0	0.15	
L1	9.9 10.5		
L2	Тур1.65		
L3	0.6 1.0		
All Dimensions in millimeter			

CRECTRON -

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

