

N-Channel Enhancement Mosfet

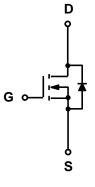
Feature

• 100V,40A

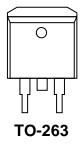
 $\begin{array}{ll} \mathsf{R}_{\mathsf{DS}\ (\mathsf{ON})} <& 25m\,\Omega \ @V_{\mathsf{GS}} = 10V & (\mathsf{TYP}{:}18m\,\Omega \,) \\ \mathsf{R}_{\mathsf{DS}\ (\mathsf{ON})} <& 38m\Omega \ @V_{\mathsf{GS}} = 4.5V & (\mathsf{TYP}{:}25m\,\Omega \,) \end{array}$

- Split Gate Trench Technology
- Lead free product is acquired
- Excellent R _{DS (ON)} and Low Gate Charge

Application


- PWM applications
- Load Switch
- Power management
- Halogen-free
- P/N suffix V means AEC-Q101 qualified, e.g:RM40N100HDV

Package Marking and Ordering Information


Device	Device Marking	Device Package	Reel Size	Tape width	Quantity (PCS)
RM40N100HDV	40N100	TO-263	-	-	800

ABSOLUTE MAXIMUM RATINGS (Ta=25 $^\circ C$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _{GS}	± 20	V
Continuous Drain Current (T _a =25℃)	lo	40	A
Continuous Drain Current (T _a =100℃)	lD	25	А
Pulsed Drain Current ⁽¹⁾	Ідм	160	A
Single Pulsed Avalanche Energy ⁽²⁾	E _{AS}	16	mJ
Power Dissipation	PD	45	W
Thermal Resistance from Junction to Case	Rejc	2.5	°C/W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55~ +150	°C

RM40N100HDV

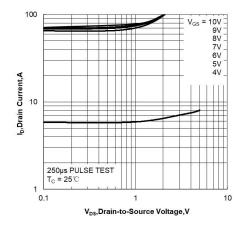
2024-06/59 REV:O

MOSFET ELECTRICAL CHARACTERISTICS($T_a=25^{\circ}C$ unless otherwise noted)

Parameter	eter Symbol Test Condition		Min	Туре	Max	Unit
Static Characteristics						
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =250µA	100	-	-	V
Zero gate voltage drain current	DSS	V _{DS} =100V, V _{GS} = 0V	-	-	1	μA
Gate-body leakage current	GSS	V_{GS} = ± 20 V, V_{DS} = 0V	-	-	±100	nA
Gate threshold voltage ⁽³⁾	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250µA	1.2	1.8	2.8	V
		V _{GS} =10V, I _D =15A	-	18	25	mΩ
Drain-source on-resistance ⁽³⁾	R _{DS(on)}	V _{GS} =4.5V, I _D =10A	-	25	38	mΩ
Forward Threshold Voltage	g fs	V _{DS} =10V, I _D =20A	-	22	-	S
Gate Resistance	Rg	V _{DS} =V _{GS} =0V, f =1MHz	-	1.62	-	Ω
Dynamic characteristics	·	·	ł	•		
Input Capacitance	Ciss		-	822	-	pF
Output Capacitance	Coss	V _{DS} =50V, V _{GS} =0V, f =1MHz	-	310	-	
Reverse Transfer Capacitance	Crss		-	23.5	-	
Switching characteristics				•		
Turn-on delay time	t _{d(on)}		-	15	-	ns
Turn-on rise time	tr	V _{DD} =50V, I _D =20A,	-	3.2	-	
Turn-off delay time	t _{d(off)}	V _{GS} =10V, R _G =3Ω	-	30	-	
Turn-off fall time	tr		-	7.6	-	
Total Gate Charge	Qg		-	22.7	-	nC
Gate-Source Charge	Qgs	- VDS=50V, ID=20A, - VGS=10V	-	6.2	-	
Gate-Drain Charge	Qgd	- VGS=10V	-	5.3	-	
Reverse Recovery Chrage	Qrr	I _F =20A,di/dt=100A/us		59		nC
Reverse Recovery Time	Trr	I _F =20A,di/dt=100A/us		45		ns
Source-Drain Diode characteristics						
Diode Forward voltage ⁽³⁾	VDS	V _{GS} =0V, I _S =10A	-	-	1.2	V
Diode Forward current ⁽⁴⁾	ls		-	-	40	А

Notes:

1. Repetitive Rating: pulse width limited by maximum junction temperature


2. EAS Condition:T_J=25 $^\circ C$,V_DD=50V,R_G=25 Ω ,L=0.5Mh

3. Pulse Test: pulse width≤300µs, duty cycle≤2%

4. Surface Mounted on FR4 Board,t≤10 sec

RATING AND CHARACTERISTICS CURVES (RM40N100HDV)

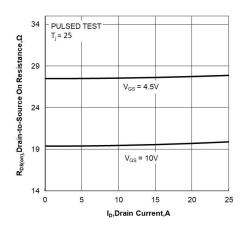
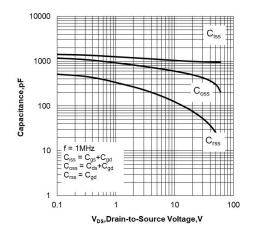



Figure 3. Drain-to-Source On Resistance vs Drain Current

Figure 5. Capacitance Characteristics

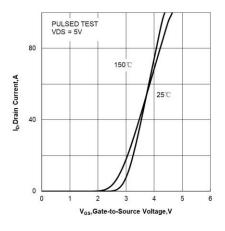


Figure 2. Transfer Characteristics

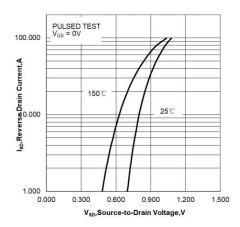
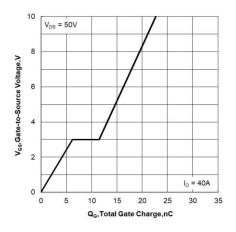



Figure 4. Body Diode Forward Voltage vs Source Current and Temperature

Figure 6. Gate Charge Characteristics

RATING AND CHARACTERISTICS CURVES (RM40N100HDV)

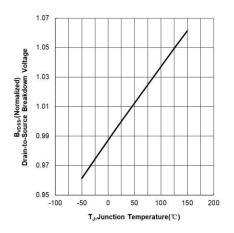


Figure 7. Normalized Breakdown Voltage vs Junction Temperature

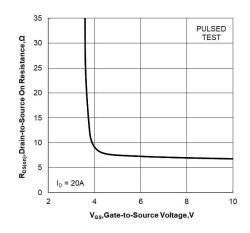


Figure 9. Drain-to-Source On Resistance vs Gate Voltage and Drain Current

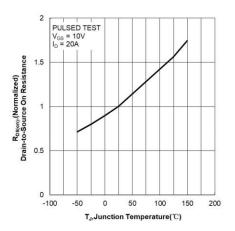


Figure 8. Normalized On Resistance vs Junction Temperature

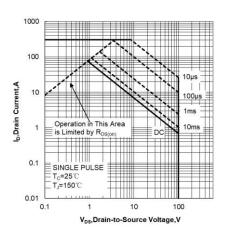


Figure 10. Maximum Safe Operating Area

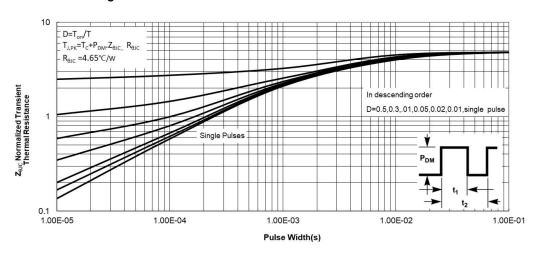
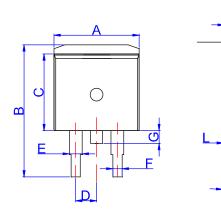



Figure11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

TO 263 Package Information

Н

Κ

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	9.90		10.20	0.390		0.402	
В	14.70		15.80	0.579		0.622	
С	9.4		9.6	0.37		0.378	
D		2.54			0.100		
E	1.20		1.40	0.047		0.055	
F	0.75		0.85	0.029		0.033	
G			1.75			0.069	
Н	4.40		4.70	0.173		0.185	
J	2.30		2.70	0.091		0.106	
К	0.38		0.55	0.015		0.022	
L	0	0.10	0.25	0	0.004	0.010	
М	1.25		1.35	0.049		0.053	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

