

# **N-Channel Enhancement Mode Power MOSFET**

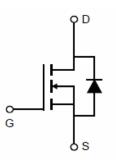
## Description

The RM50N60DFV uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

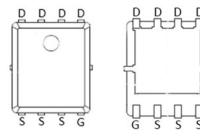
## **General Features**

V<sub>DS</sub> =60V,I<sub>D</sub> =50A

 $R_{\text{DS(ON)}} < 16 m\Omega \ \text{@V} \ _{\text{GS}} \text{=} 10 V$ 


 $R_{DS(ON)} < 20m\Omega @ V_{GS}$ =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation


## Application

- PWM
- Load Switching
- P/N suffix V means AEC-Q101 qualified, e.g:RM50N60DFV
- Halogen-free

#### 100% UIS TESTED! 100% ∆Vds TESTED!



**Schematic Diagram** 



Top View

**Bottom View** 

#### Package Marking and Ordering Information

| Device Marking | Device     | Device Package | Reel Size | Tape width | Quantity |
|----------------|------------|----------------|-----------|------------|----------|
| 50N60          | RM50N60DFV | DFN5X6-8L      | -         | -          | -        |

## Absolute Maximum Ratings (T<sub>c</sub>=25℃unless otherwise noted)

| Parameter                                        | Symbol           | Value             | Unit |
|--------------------------------------------------|------------------|-------------------|------|
| Drain-Source Voltage                             | V <sub>DS</sub>  | 60                | V    |
| Gate-Source Voltage                              | V <sub>GS</sub>  | ±20               | V    |
| Continuous Drain Current (Ta =25°C)              | lD               | 50                | A    |
| Continuous Drain Current (T <sub>a</sub> =100°C) | lo               | 33                | A    |
| Pulsed Drain Current <sup>(1)</sup>              | I <sub>DM</sub>  | 160               | A    |
| Single Pulsed Avalanche Energy <sup>(2)</sup>    | Eas              | 64                | mJ   |
| Power Dissipation                                | PD               | 54                | W    |
| Thermal Resistance from Junction to Case         | Rejc             | 2.74              | °C/W |
| Thermal Resistance from Junction to Ambient      | Reja             | 50                | °C/W |
| Junction Temperature                             | TJ               | 175               | °C   |
| Storage Temperature                              | T <sub>STG</sub> | <b>-</b> 55~ +175 | °C   |

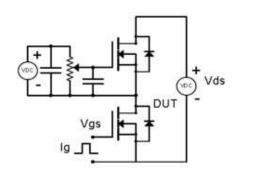
## Electrical Characteristics (T<sub>C</sub>=25 $^{\circ}$ C unless otherwise noted)

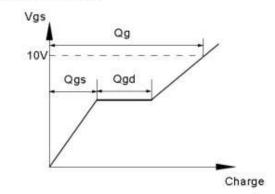
| Parameter                                 | Symbol               | Test Condition                                           | Min | Туре | Max  | Unit |  |
|-------------------------------------------|----------------------|----------------------------------------------------------|-----|------|------|------|--|
| Static Characteristics                    |                      |                                                          |     |      |      |      |  |
| Drain-source breakdown voltage            | V <sub>(BR)DSS</sub> | V <sub>GS</sub> = 0V, I <sub>D</sub> =-250µA             | 60  | -    | -    | V    |  |
| Zero gate voltage drain current           | DSS                  | V <sub>DS</sub> =60V, V <sub>GS</sub> = 0V               | -   | -    | 1    | μA   |  |
| Gate-body leakage current                 | GSS                  | $V_{GS}$ = $\pm 20V$ , $V_{DS}$ = $0V$                   | -   | -    | ±100 | nA   |  |
| Gate threshold voltage <sup>(3)</sup>     | V <sub>GS(th)</sub>  | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250µA | 1   | 1.6  | 2.2  | V    |  |
| Drain-source on-resistance <sup>(3)</sup> | R <sub>DS(on)</sub>  | V <sub>GS</sub> =10V, I <sub>D</sub> =20A                | -   | 13.2 | 16   | mΩ   |  |
| Drain-source on-resistance <sup>(3)</sup> |                      | V <sub>GS</sub> =4.5V, I <sub>D</sub> =15A               | -   | 15.2 | 20   |      |  |
| Forward tranconductance <sup>(3)</sup>    | <b>g</b> fs          | V <sub>DS</sub> =5V, I <sub>D</sub> =10A                 | 20  | -    | -    | S    |  |
| Dynamic characteristics                   |                      |                                                          |     |      |      |      |  |
| Input Capacitance                         | Ciss                 |                                                          | -   | 2600 | -    | pF   |  |
| Output Capacitance                        | Coss                 | V <sub>DS</sub> =25V, V <sub>GS</sub> =0V, f =1MHz       | -   | 125  | -    |      |  |
| Reverse Transfer Capacitance              | Crss                 | 1                                                        | -   | 105  | -    |      |  |
| Switching characteristics                 |                      |                                                          |     | •    |      |      |  |
| Turn-on delay time                        | t <sub>d(on)</sub>   |                                                          | -   | 4    | -    |      |  |
| Turn-on rise time                         | tr                   | V <sub>DD</sub> =30V, I <sub>D</sub> =20A                | -   | 8    | -    | ns   |  |
| Turn-off delay time                       | t <sub>d(off)</sub>  | V <sub>GS</sub> =10V, R <sub>G</sub> =1.8Ω               | -   | 27   | -    |      |  |
| Turn-off fall time                        | t <sub>f</sub>       |                                                          | -   | 20   | -    |      |  |
| Total Gate Charge                         | Qg                   |                                                          | -   | 51   | -    | nC   |  |
| Gate-Source Charge                        | Qgs                  | VDS=30V, ID=20A,<br>VGS=10V                              | -   | 7.9  | -    |      |  |
| Gate-Drain Charge                         | Qgd                  | - VGS=10V                                                | -   | 8.1  | -    |      |  |
| Source-Drain Diode characteristics        |                      |                                                          | •   |      |      |      |  |
| Diode Forward voltage <sup>(3)</sup>      | V <sub>SD</sub>      | V <sub>GS</sub> =0V, I <sub>S</sub> =20A                 | -   | -    | 1.2  | V    |  |
| Diode Forward current <sup>(4)</sup>      | ls                   |                                                          | -   | -    | 50   | А    |  |
| Body Diode Reverse Recovery Time          | trr                  | T」=25°,IF=20A,di/dt=100A/us                              |     | 21   |      | ns   |  |
| Body Diode Reverse Recovery Charge        | Qrr                  | T <sub>J</sub> =25°, IF=20A,di/dt=100A/us                |     | 18   |      | nc   |  |

#### Notes:

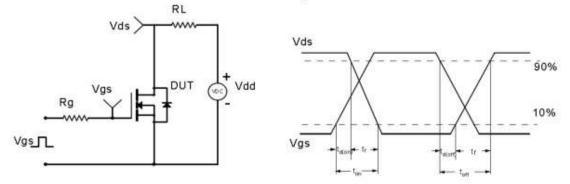
1. Repetitive Rating: pulse width limited by maximum junction temperature

2. EAS Condition:TJ=25 $^\circ C$ ,VDD=30V,RG=25 $^\Omega$ ,L=0.5mH

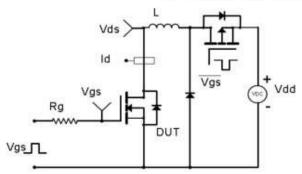

3. Pulse Test: pulse width≤300µs, duty cycle≤0.5%

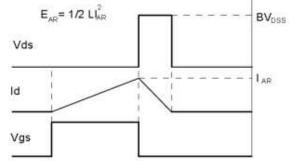

4. Surface Mounted on FR4 Board,t≤10 sec



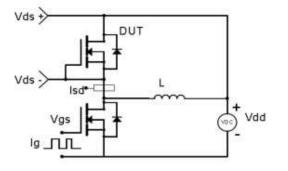

## **Test Circuit & Waveform**

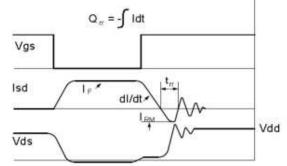
#### Gate Charge Test Circuit & Waveform



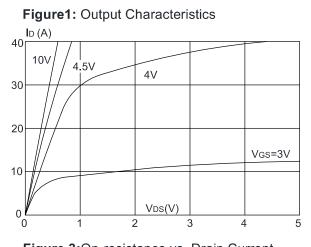

Resistive Switching Test Circuit & Waveforms

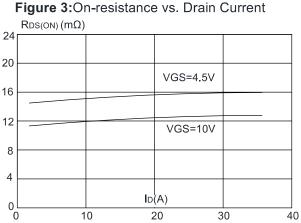




#### Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

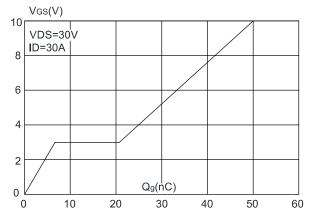





#### Diode Recovery Test Circuit & Waveforms







**C**RECTRON -

# **RATING AND CHARACTERISTICS CURVES (RM50N60DFV)**





#### Figure 5: Gate Charge Characteristics



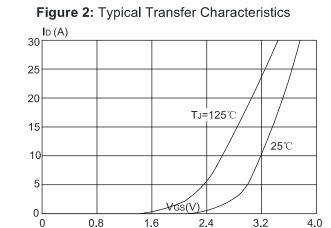
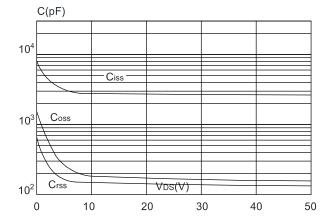
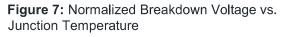





Figure 4: Body Diode Characteristics Is(A) 1.0E+01 1.0E+00 1.0E-01 **125**℃ , **ΤJ=25**℃ 1.0E-02 1.0E-03 1.0E-04 1.0E-05└ 0.0 VSD(V) 0.2 0.4 0.6 0.8 1.0

Figure 6: Capacitance Characteristics



## **RATING AND CHARACTERISTICS CURVES (RM50N60DFV)**



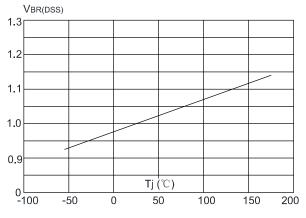



Figure 9: Maximum Safe Operating Area

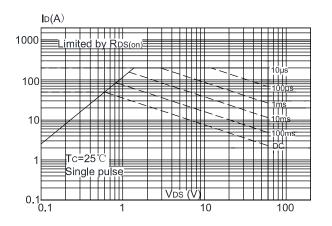
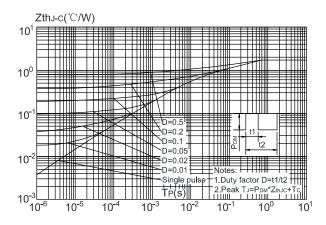
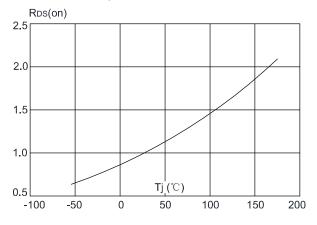
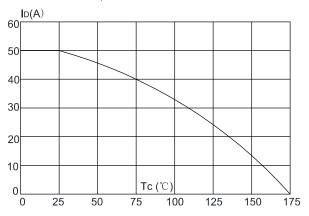
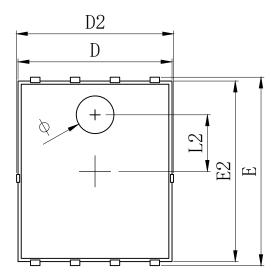
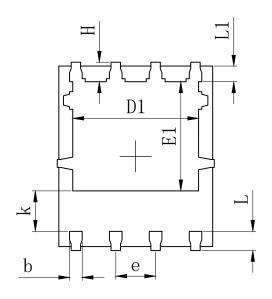
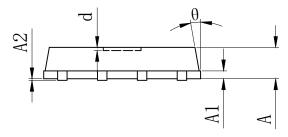




Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case



**Figure 8:** Normalized on Resistance vs. Junction Temperature



Figure 10: Maximum Continuous Drain Current vs. Case Temperature



# DFN5X6-8L Package Information







| SYMBOL | MILLIMETER |       |        |  |  |
|--------|------------|-------|--------|--|--|
|        | MIN        | Тур.  | MAX    |  |  |
| А      | 0.900      | 1.000 | 1.100  |  |  |
| A1     | 0.254 REF. |       |        |  |  |
| A2     | 0~0.05     |       |        |  |  |
| D      | 4.824      | 4.900 | 4.976  |  |  |
| D1     | 3.910      | 4.010 | 4.110  |  |  |
| D2     | 4.924      | 5.000 | 5.076  |  |  |
| Е      | 5.924      | 6.000 | 6.076  |  |  |
| E1     | 3.375      | 3.475 | 3. 575 |  |  |
| E2     | 5.674      | 5.750 | 5.826  |  |  |
| b      | 0.350      | 0.400 | 0.450  |  |  |
| е      | 1.270 TYP. |       |        |  |  |
| L      | 0.534      | 0.610 | 0.686  |  |  |
| L1     | 0.424      | 0.500 | 0.576  |  |  |
| L2     | 1.800 REF. |       |        |  |  |
| k      | 1.190      | 1.290 | 1.390  |  |  |
| Н      | 0.549      | 0.625 | 0.701  |  |  |
| θ      | 8°         | 10°   | 12°    |  |  |
| φ      | 1.100      | 1.200 | 1.300  |  |  |
| d      |            |       | 0.100  |  |  |

# **C**RECTRON ·

# **DISCLAIMER NOTICE**

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

