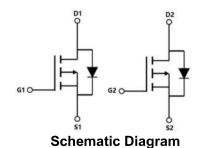
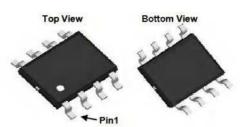


Dual P-Channel Enhancement Mosfet


Features


P-Channel

$$\begin{split} &V_{_{DS}}=\text{-}60\text{V},\ I_{_{D}}=\text{-}6.0\text{A}\\ &R_{_{DS(ON)}}\text{@}V_{_{GS}}=\text{10V},\ \text{TYP 52m}\Omega\\ &R_{_{DS(ON)}}\text{@}V_{_{GS}}=\text{4.5V},\ \text{TYP 65m}\Omega \end{split}$$

General Description

- Motor Control
- Synchronous Rectification
- Halogen-free

Package Marking and Ordering Information

Device Marking	Device	Device Package	Packaging Code	Reel Size	Quantity(PCS)
D6P60	RMD6P60S8	SOP-8	-W	13inch	4000

Absolute Maximum Ratings $@T_A=25^{\circ}C$ unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	-60	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current (T _a =25℃)	I _D	-6.0	A
Continuous Drain Current (T _a = 70 ℃)	I _D	- 4.5	A
Pulsed Drain Current (1)	I _{DM}	-12	A
Power Dissipation (T _a =25℃)	P _D	3.3	W
Thermal Resistance from Junction to Ambient	R _{θJA}	62.5	°C/W
Junction Temperature	TJ	-55~150	$^{\circ}$
Storage Temperature	T _{STG}	-55~150	$^{\circ}$

2025-10/59 REV:O Electrical Characteristics @T_A=25°C unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Static	•	•				•
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_{D} = -250\mu A$	-60			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -48V, V _{GS} = 0V			-1	μΑ
Gate Threshold Voltage	$V_{GS(TH)}$	V _{GS} = V _{DS} , I _{DS} = -250 μ A	-1	-1.6	-3	V
Gate Leakage Current	I _{GSS}	V _{GS} = ±20V, V _{DS} =0V			±100	nA
Dunin Course Ou state Besistance	R _{DS(on)}	V _{GS} = -10V, I _D = -4.5A		52	65	mΩ
Gate Leakage Current Drain-Source On-state Resistance Forward Transconductance Diode Forward Voltage Diode Forward Current Switching Fotal Gate Charge	R _{DS(on)}	$V_{GS} = -4.5V$, $I_{D} = -3.8A$		65	75	mΩ
Forward Transconductance	g _{FS}	V _{DS} = -10V, I _D = -3.1A	2			S
Diode Forward Voltage	V _{SD}	I _{SD} = -1A , V _{GS} =0V			-1.2	V
Diode Forward Current	I s	T _C =25°C			-3.5	Α
Switching	'				•	•
Total Gate Charge	Qg			11		nC
Gate-Source Charge	Q_{gs}			2.4		nC
Gate-Drain Charge	Q_{gd}			1.6		nC
Turn-on Delay Time	t _{d (on)}			12		ns
Turn-on Rise Time	tr	V _{DD} =-30V, V _{GS} =-10V, I _D =-1A,		4		ns
Turn-off Delay Time	t _{d(off)}	R _{GEN} =6Ω		38		ns
Turn-Off Fall Time	tf			12		ns
Dynamic	•			•	•	
Input Capacitance	Ciss			885		pF
Output Capacitance	Coss	V _{DS} = -30V,V _{GS} =0V, f=1.0MHz		85		pF
Reverse Transfer Capacitance	Crss			80		рF

A: The value of ReJA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The value in any given application depends on the user's specific board design.

B: Repetitive rating, pulse width limited by junction temperature.

C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

RATING AND CHARACTERISTICS CURVES (RMD6P60S8)

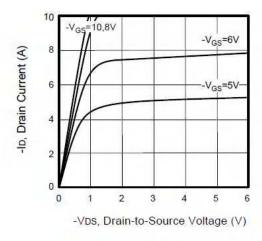


Figure 1. Output Characteristics

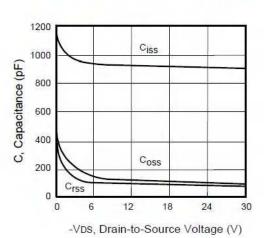


Figure 3. Capacitance

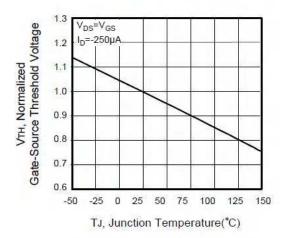


Figure 5. Gate Threshold Variation with Temperature

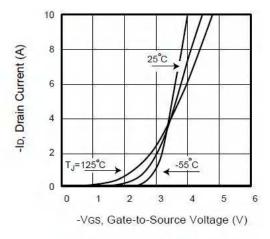


Figure 2. Transfer Characteristics

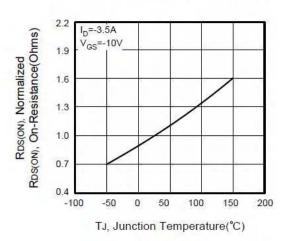


Figure 4. On-Resistance Variation with Temperature

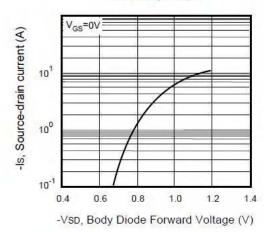


Figure 6. Body Diode Forward Voltage Variation with Source Current

RATING AND CHARACTERISTICS CURVES (RMD6P60S8)

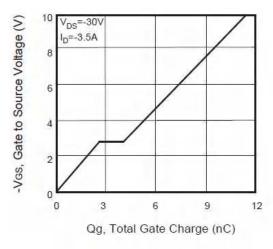


Figure 7 . Gate Charge

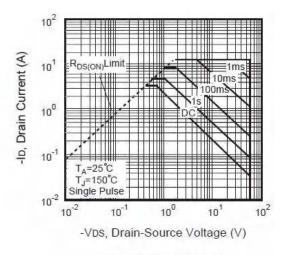


Figure 8 . Maximum Safe Operating Area

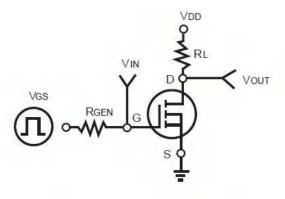
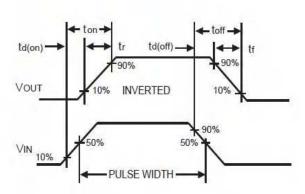
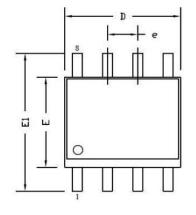
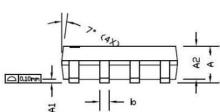
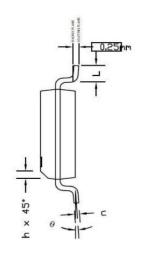


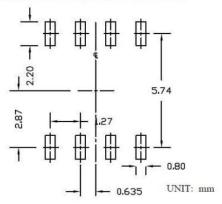
Figure 9 . Switching Test Circuit



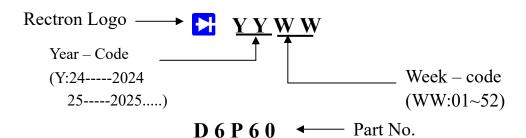

Figure 10. Switching Waveforms




Figure 11. Normalized Thermal Transient Impedance Curve


Package Information

RECOMMENDED LAND PATTERN


SYMBOLS	DIMENSIO	NS IN MILI	IMETERS	DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.65	1.75	0.053	0.065	0.069	
A1	0.10	0.15	0.25	0.004	0.006	0.010	
A2	1.25	1.50	1.65	0.049	0.059	0.065	
b	0.31	0.41	0.51	0.012	0.016	0.020	
С	0.17	0.20	0.25	0.007	0.008	0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
E	3.80	3.90	4.00	0.150	0.154	0.157	
e	1.27 BSC			0.050 BSC			
E1	5.80	6.00	6.20	0.228	0.236	0.244	
h	0.25	0.30	0.50	0.010	0.012	0.020	
L	0.40	0.69	1.27	0.016	0.027	0.050	
θ	0°	4°	8°	0°	4°	8°	

- 1. ALL DIMENSIONS ARE IN MILLMETERS.
 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
 3. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
 MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.
 - CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

RECTRON

Marking on the body

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

