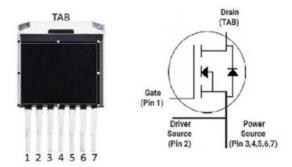


N-Channel SiC Power MOSFET G2 MOSFET Technology

Features

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitance
- Easy to Parallel and Simple to Drive
- P/N suffix V means AEC-Q101qualified, e.g:RSM33N1200D7LV


Benefits

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency

Applications

- Renewable Energy
- EV Battery Chargers
- High Voltage DC/DC Converters
- Switch Mode Power Supplies
- Halogen-free

$\begin{array}{cccccc} V_{DS} & = & 1200 & V \\ \\ R_{DS(on)} & = & 75 & m\Omega \\ \\ I_D@25^{\circ}C & = & 33 & A \end{array}$

Package Marking and Ordering Information

Device Marking Device		Device Package	Packaging Code	Reel Size	Quantity(PCS)	
33N120	RSM33N120D7LV	TO-263-7	-W	13inch	400	

Maximum Ratings (T_c=25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain-Source Voltage	1200	٧	V _{GS} =0V, I _D =100μA	
V _{GSmax}	Gate-Source Voltage	-8/+22	٧	Absolute maximum values	
V _{GSop}	Gate-Source Voltage	-4/+18	V	Recommended operational values	
	Continuous Drain Current	33		V _{GS} =18V, T _c =25°C	Fig. 19
I _D		23.8	A	V _{GS} =18V, T _c =100°C	
I _{D(pulse)}	Pulsed Drain Current	80	Α	Pulse width t _p limited by T _{Jmax}	Fig. 22
P _D	Power Dissipation	136	w	T _c =25°C, T _J =175°C	Fig. 20
T _J , T _{STG}	Operating Junction and Storage Temperature	-55 to +175	°C		
TL	Solder Temperature, 1.6mm from case for 10s	260	°C		
	Mounting Torque, (M3 or 6-32 screw)	1	Nm		
M_d		8.8	lbf-in		

Electrical Characteristics (T_c=25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	1200	/	/	V	V _{GS} =0V, I _D =100μA		
	0.71	1.9	2.6	4.0	.,	V _{DS} =V _{GS} , I _D =5mA	F:- 44	
$V_{GS(th)}$	Gate Threshold Voltage	/	1.8	/	V	V _{DS} =V _{GS} , I _D =5mA, T _J =175°C	Fig. 11	
I _{DSS}	Zero Gate Voltage Drain Current	/	1	100	μΑ	V _{DS} =1200V, V _{GS} =0V		
I _{GSS+}	Gate-Source Leakage Current	/	10	250	nA	V _{DS} =0V, V _{GS} =22V		
I _{GSS-}	Gate-Source Leakage Current	/	10	250	nA	V _{DS} = 0 V, V _{GS} =- 8 V		
В	Drain Source On State Besistance	/	75	95	mΩ	V _{GS} =18V, I _D =20A	Fig.	
$R_{DS(on)}$	Drain-Source On-State Resistance	/	120	/		V _{GS} =18V, I _D =20A, T _J =175°C	4,5,6	
			10.4	/	c	V _{DS} =20V, I _D =20A	Fi- 7	
g fs	Transconductance	/	9.2	/	S	V _{DS} =20V, I _D =20A, T _J =175°C	Fig. 7	
C _{iss}	Input Capacitance	/	1200	/		V _{GS} =0V	F:_	
C _{oss}	Output Capacitance	/	63	/	рF	V _{DS} =1000V	Fig.	
C _{rss}	Reverse Transfer Capacitance	/	5.7	/		f=1MHz	17,18	
E _{oss}	C _{oss} Stored Energy	/	41	/	μͿ	V _{AC} =25mV	Fig. 16	
E _{ON}	Turn-On Switching Energy	/	586	/	1	V _{DS} =800V, V _{GS} =-4V/18V		
E _{OFF}	Turn-Off Switching Energy	/	273	/	μJ	I _D =20A, R _{G(ext)} =2.5Ω, L=100μH		
t _{d(on)}	Turn-On Delay Time	/	13	/				
t _r	Rise Time	/	12	/]	V _{DS} =800V, V _{GS} =-4V/18V, I _D =20A		
t _{d(off)}	Turn-Off Delay Time	/	16	/	ns	$R_{G(ext)}=2.5\Omega$, $R_L=20\Omega$		
t _f	Fall Time	/	10	/				
R _{G(int)}	Internal Gate Resistance	/	5.5	/	Ω	f=1MHz, V _{AC} =25mV		
Q _{GS}	Gate to Source Charge	/	21.5	/		V _{DS} =800V		
\mathbf{Q}_{GD}	Gate to Drain Charge	/	14.6	/	nC	V _{GS} =-4V/18V	Fig. 12	
\mathbf{Q}_{G}	Total Gate Charge	/	68.1	/		I _D =20A		

Reverse Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V	Diode Forward Voltage	4.2	/	V	V _{GS} =-4V, I _{SD} =10A	Fig.
V _{SD}		3.8	/		V _{GS} =-4V, I _{SD} =10A, T _J =175°C	8,9,10
Is	Continuous Diode Forward Current	/	33	Α	T _C =25°C	
t _{rr}	Reverse Recover Time	28	/	ns		
Q _{rr}	Reverse Recovery Charge	62	/	nC	V _R =800V, I _{SD} =20A	
I _{rrm}	Peak Reverse Recovery Current	3.7	/	Α		

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$R_{\theta JC}$	Thermal Resistance from Junction to Case	0.84	0.84 / °C/W		Fig. 21	
$R_{\theta JA}$	Thermal Resistance from Junction to Ambient	/	40	C/W		Fig. 21

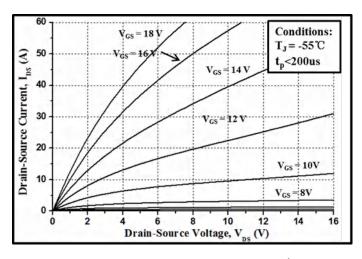


Figure 1. Output Characteristics T_J = -55°C

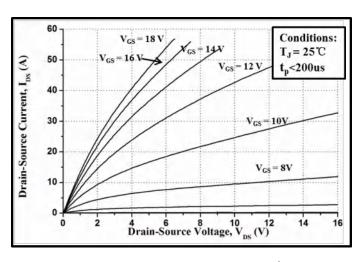


Figure 2. Output Characteristics T_J = 25°C

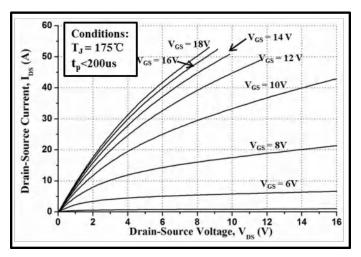


Figure 3. Output Characteristics T_J = 175°C

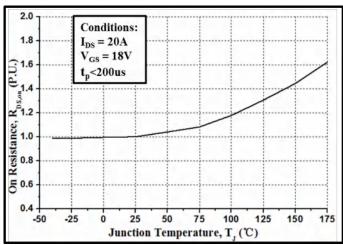


Figure 4. Normalized On-Resistance vs. Temperature

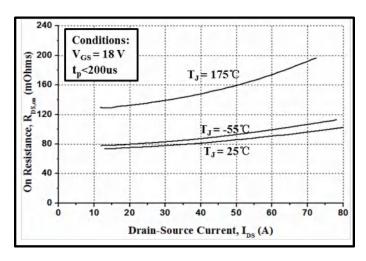


Figure 5. On-Resistance vs. Drain Current For Various Temperatures

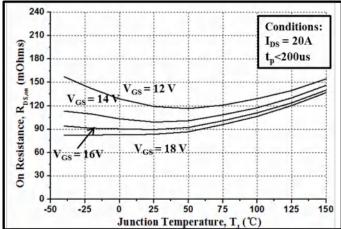


Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

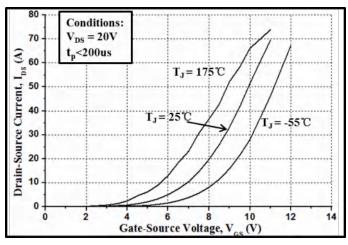


Figure 7. Transfer Characteristic for Various Junction Temperatures

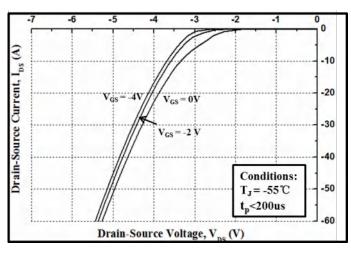


Figure 8. Body Diode Characteristic at -55°C

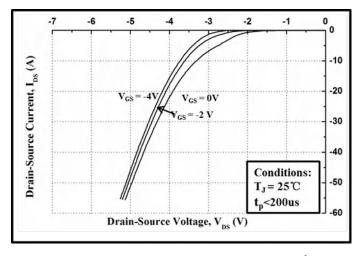


Figure 9. Body Diode Characteristic at 25°C

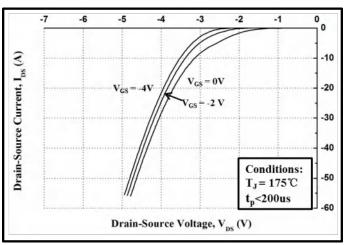


Figure 10. Body Diode Characteristic at 175°C

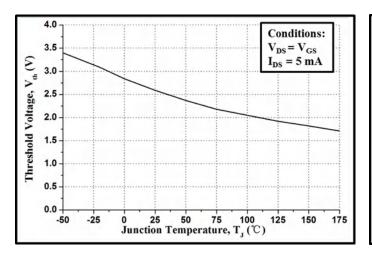


Figure 11. Threshold Voltage vs. Temperature

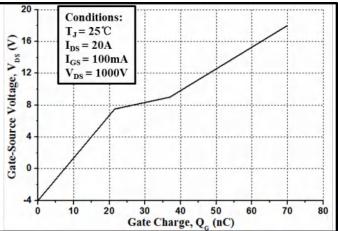
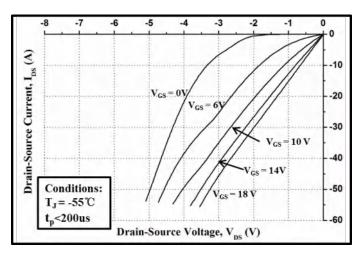



Figure 12. Gate Charge Characteristics

-2 0 20 Drain-Source Current, Ips (A) -40 $V_{GS} = 0V$ -60 -80 -100 -120 -140 -160 Conditions: $V_{GS} = 18V$ -180 T_J= 25℃ -200 t_p<200us Drain-Source Voltage, V_{DS} (V)

Figure 13. 3rd Quadrant Characteristic at -55°C

Figure 14. 3rd Quadrant Characteristic at 25°C

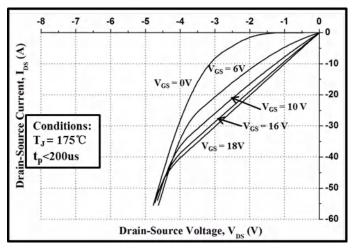


Figure 16. Output Capacitor Stored Energy

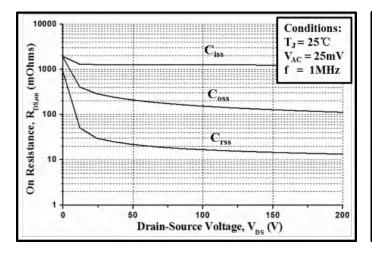


Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)

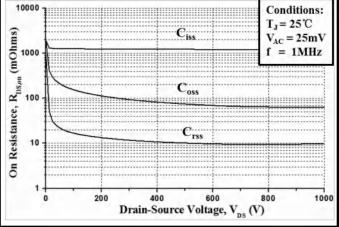
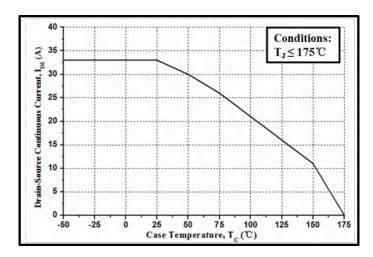



Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V)

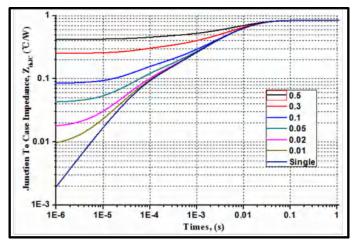

Conditions: 150 (W) 120 (M) T_J≤175°C Dissip 90 Maximum Power 30 -50 -25 25 50 75 100 125 150 Case Temperature, $T_c(\mathcal{C})$

Figure 19. Continuous Drain Current Derating vs.

Case Temperature

Figure 20. Maximum Power Dissipation Derating vs.

Case Temperature

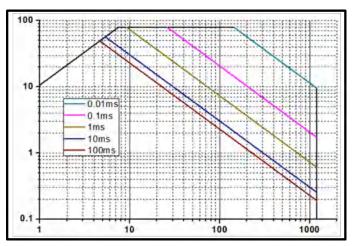


Figure 21. Transient Thermal Impedance (Junction - Case)

Figure 22. Safe Operating Area

Test Circuit Schematic

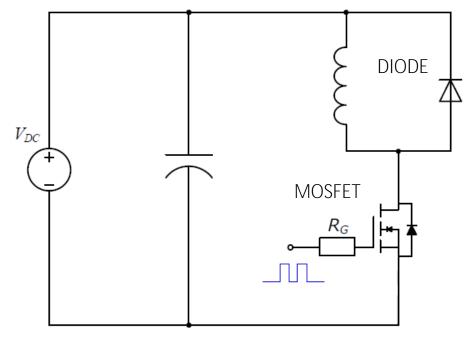
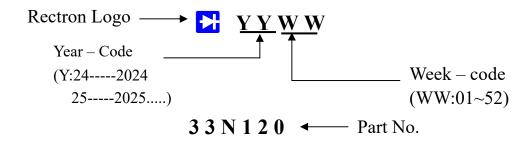
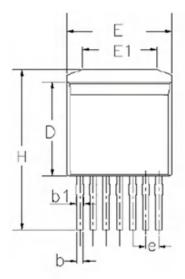
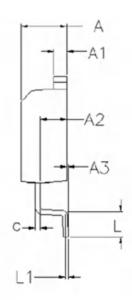
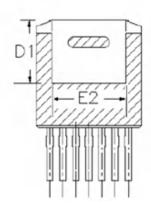
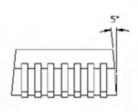



Figure 23. Clamped Inductive Switching
Waveform Test Circuit




Marking on the body





Package Dimensions

SYMBOLS	DIMENSIONS IN MILLMETERS						
SIMBULS	MIN	NOM	MAX				
A	4.3	4. 43	4.6				
A1	A1 1.2		1.4				
A2	2.4	2.6	2.7				
A3	A3 0		0. 25				
b	0.5	0.6	0.7				
b1	0.6	0.7	0.9				
С	0.4	0.5	0.6				
D	8.88	9. 08	9. 28				
D1	6. 15	6. 45	6.65				
е	1. 27bsc						
E	10.08	10.18	10. 28				
E1	6. 5	7	8.3				
E2	7.3	7.82	7.97				
Н	14.8	15. 5	16				
L	1.9	2.2	2.75				

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

